Long Island Power Authority

Energy Audit Report

for

<u>Deer Park Schools</u> <u>Robert Frost Middle School</u>

March 5, 2008

©2008 The Daylight Savings Company

Table of Contents

Section

1.	EXECUTIVE SUMMARY 1	
	Auditor's Comments	-
2.	ENERGY COST REDUCTION OPPORTUNITIES	I
	Install Lighting Controls	j
3.	HISTORICAL ENERGY USAGE AND COSTS	
4.	EQUIPMENT INVENTORY	;
5.	METHODOLOGY 18	5

Comment [AB1]: 03-12-01 Re-started from v7.10 and redid the changes through 7.13. 1. Edited gas string to include mention of total CCF. 2. Fixed TOC footer to say "Energy Report" instead of "New York Energy Report". 3. Edited Lighting Controls text to accommodate ems points in the lighting controls table. 4. No need to fix the two links that were to QC:. They weren't in 7.10. 5. Renamed to 7.15 04-02-01 1. Fixed gas string to correct total CCF. 5. Renamed to 7.16

Page

©2008 The Daylight Savings Company Goshen, NY Deer Park Robert Frost.doc Page i

This report presents the findings of an energy survey conducted on October 3, 2007 by Bill Conn for:

Deer Park Schools Robert Frost Middle School 450 Half Hollow Road Deer Park, NY 11729 631-274-4080

Facility contact person:	Kirk Gostkowski	
LIPA account number(s):	724-39-4200-18	
	Gas 724-98-4203-13	Gas 724-98-4202-16

Long Island Power Authority (LIPA) conducts energy surveys at no charge to its customers. The surveys promote LIPA's message of safeguarding the environment, reducing dependence on foreign oil and delaying the need to build costly new power plants. This can be achieved through the wiser and more efficient use of energy.

The annual energy costs at this facility are as follows:

Electricity	\$126,316
Natural Gas	\$89,000
Total	\$215,316

The potential annual energy cost savings are shown below in Table 1-1.

 Table 1-1

 Energy Cost Reduction Opportunities (ECRO's)

Description	Potential Rebate*	Cost After Rebate	Annual Savings	Payback with Rebate	% of Annual Energy Cost
Upgrade the Lighting	\$1,960	\$16,660	\$5,412	3.1 years	2.5%
Install Lighting Controls	\$1,575	\$11,925	\$4,204	2.8 years	2.0%
Improve Temperature Control	\$100	\$3,030	\$1,703	1.8 years	0.8%
Totals	\$3,635	\$31,615	\$11,319	2.8 years	5.3%

* **NOTE**: Rebates are subject to caps, changes and eligibility requirements. In addition, there may be other rebates that apply. Prior to purchasing any equipment you must contact your LIPA representative or the audit program administrator, Stacey Wagner, at (631) 755-5358 for assistance in the pre-approval process and in determining your potential rebate amount.

©2008 The Daylight Savings Company Goshen, NY Deer Park Robert Frost.doc Page 1

1 Executive Summary

The estimated demand and energy savings are shown below in Table 1-3. The information in this table corresponds to the recommendations in Table 1-1.

Recommendation	Total kW Reduction	Total Annual kWh Reduction	Total Annual Therms Reduced
Upgrade the Lighting	10.5	27,194	
Install Lighting Controls		28,568	
Improve Temperature Control			1,338
Totals	10.5	55,762	1,338

Table 1-3 Estimated Energy Savings

The remainder of the report is organized as follows: Section 2 explains the details of the Energy Cost Reduction Opportunities, Section 3 shows the historical energy usage and costs for this facility. Section 4 gives an equipment inventory and discusses the building characteristics (architectural, mechanical, electrical, etc.), and Section 5 is the methodology used to survey and analyze your facility.

Auditor's Comments

In most school buildings the most cost effective measure will be temperature control during unoccupied periods. The temperature is currently being setback at night but there may be opportunities to optimize these savings. Each school should have a temperature control schedule and the heat set back 15 minutes before the end on occupancy. Some investment may be needed to assure all pneumatic controls are working properly.

Any reported overheating in any areas should be addressed promptly.

Most exhaust fans have wind up timers. This is simple and well suited to areas with irregular use. The building temperature is regulated by pneumatic controls. From the energy analysis it appears that they are working relatively well.

©2008 The Daylight Savings Company Goshen, NY Deer Park Robert Frost.doc Page 2

Energy Star Rating

The Environmental Protection Agency's Energy Star Portfolio Manager program rates buildings by their energy efficiency. This rating is adjusted for building use and location. This is a voluntary program established to help facility managers establish baselines for energy consumption and measure progress.

How the Rating System Works

The national energy performance rating is a type of external benchmark that helps energy managers assess how efficiently their buildings use energy, relative to similar buildings nationwide. The rating system's 1–100 scale allows everyone to quickly understand how a building is performing — a rating of 50 indicates average energy performance, while a rating of 75 or better indicates top performance.

EPA, in conjunction with stakeholders, developed the energy rating as a screening tool; it does not by itself explain why a building performs a certain way, or how to change the building's performance. It does, however, help organizations assess performance and identify those buildings that offer the best opportunities for improvement and recognition.

Your building's actual source energy data is <u>weather normalized</u>; this enables EPA to assess your building's performance relative to the typical weather for your region, without bias for the specific weather patterns in the rating year.

Excerpted from Energy Star.gov

Based upon your current building use and energy consumption the Environmental Protection Agency your facility rating is as follows:

<u>Baseline Score</u>	50	Your current rating. This score represents your buildings relative energy efficiency on a 1-100 scale compared to similar buildings in your climate. This number can serve as a baseline to gauge improvements in energy efficiency.
Target	64	The target score is a customer-selected number. In this case the Target score was based on the energy reduction recommendations in this energy audit. In other words, this is where your score should be after implementation of the efficiency measures.
Energy Star Designation	75	Facilities with a Rating of 75 or above can receive an Energy Star designation by the EPA

Energy Star Portfolio Manager http://www.energystar.gov/index.cfm?c=evaluate_performance.bus_portfoliomanager

©2008 The Dayli	ght Savings Company
Goshen, NY	
Deer Park Rober	Frost.doc

Page 3

<u>Audit Disclaimer</u>

This audit has been conducted and prepared by LIPA for the sole purpose of presenting energy cost reduction opportunities for you. This report is not intended for any other purpose. The data used in this audit was provided by your organization and was not independently verified by us.

While the recommendations in this report have been reviewed for technical accuracy, LIPA is not liable if projected savings are not actually achieved. The recommendations are based on an analysis of conditions observed at the time of the audit and information provided by your organization. Estimated savings are computed on the basis of research by government agencies and engineering groups. Actual savings will depend on many factors including conservation measures implemented, seasonal variations in fuel price and weather, and specific energy use practices of the building occupants.

Costs are based on average local costs for materials and labor. It is strongly suggested that you contact a qualified contractor prior to implementing any of the recommendations outlined in this report. Many items are not included in our costs, such as removal and disposal of the existing equipment, bringing the new equipment installation up to code, asbestos abatement, lighting ballast PCB and lamp mercury handling, etc.

We hope that this report is helpful and that you will implement the energy savings measures that we recommended. If you have any questions, please contact Stacey Wagner at (631) 755-5358 or your LIPA representative.

©2008 The Daylight Savings Company Goshen, NY Deer Park Robert Frost.doc Page 4

2 Energy Cost Reduction Opportunities

Install Lighting Controls

Install Lighting Controls to Reduce the Lighting Use

In some areas the lighting is left on unnecessarily. Many times this is due to the idea that it is better to keep the lights on rather than to continuously switch them on and off. The on/off dilemma was studied and it was found that the best option is to turn the lights off whenever possible. Although this does reduce the lamp life, the energy savings far outweigh the lamp replacement costs. The cutoff for when to turn the lights off is around two minutes. If the lights can be off for only a two minute interval, then it pays to shut them off.

Lighting controls come in many forms. Sometimes an additional switch is all it would take. In some cases a wind-up timer is what is required. Another type is the timeclock which allows the user to set an on/off schedule. Timeclocks can be a dial clock with on/off indicators on it, or a timeclock can be a small box the size of a thermostat where the user programs the on/off schedule in a digital format like setting the alarm on a wristwatch. Occupancy sensors detect motion and will switch the lights on when the room is occupied. They can either be mounted in place of the current wall switch, or they can be mounted on the ceiling to cover large areas. Lastly, photocells are a lighting control that sense light levels and will turn the lights off when there is adequate daylight. These are mostly used outside, but they are becoming much more popular in energy-efficient office designs as well.

Details of the lighting controls recommendation are shown in the following table.

Line # - Area	Exist. Hrs.	New Hrs.	Type of Control to Install	Qty	Mat'l Cost	Labor Cost	Potential Rebate	Cost After Rebate	Annual Savings	Payback (yrs)
3 - Classrooms	50	40	Ceiling Occupancy Sensor	45	\$6,750	\$6,750	\$1,575	\$11,925	\$3,193	3.7
12 - Gym	60	50							\$1,011	
	\$6,750	\$6,750	\$1,575	\$11,925	\$4,204	2.8				

©2008 The Daylight Savings Company Goshen, NY Deer Park Robert Frost.doc Page 5

Improve Temperature Control

It is the intention of almost all facilities to keep the thermostat set at the most economical position while providing an appropriate climate for the occupants. However, due to thermostat problems, too many people with access to the thermostat, or faulty setback equipment, many control systems fall short of the optimum energy cost savings.

Install Digital Thermostats

By installing digital thermostats you eliminate most of the impediments to significant energy cost savings. Digital thermostats can be purchased with password capability, or key capability, or other deterrent. And in addition to the savings found through consistent setpoints, they can be programmed to more extreme unoccupied temperatures with a warm-up schedule that prepares the building for occupancy.

The following tables show the existing setpoints for each area of the facility and also the recommended or "proposed" setpoints (shown in the shaded rows). It should be noted that the temperature setpoints in the facility may have varied greatly over the past twelve months. The information shown below for the "existing conditions" is based on data collected at the site and is adjusted up or down depending upon the amount of energy used over the past twelve months.

		Occupied Periods		Days/	Heating Profile		Cooling Profile	
Zone 1		From	То	Week	Occupied	Unocc	Occupied	Unocc
Air Conditioned Offices & Classrooms	existing	7:00 AM	5:00 PM	5	70	62	72	
	proposed	7:00 AM	5:00 PM	5	70	55	72	
	existing			2		62		
	proposed			2		55		

Zone 1 Summary - Air Conditioned Offices & Classrooms	
Annual Heating Cost Savings (gas):	\$1,703
Number of Thermostats Required:	1
Total Materials:	\$65
Total Labor:	\$1,500
Total Installation Cost:	\$1,565
Payback:	0.9 years

©2008 The Daylight Savings Company Goshen, NY Deer Park Robert Frost.doc Page 6

2 Energy Cost Reduction Opportunities

		Occupied Periods		Days/	Heating Profile		Cooling Profile	
Zone 2		From	То	Week	Occupied	Unocc	Occupied	Unocc
Non Air Conditioned Spaces	existing	7:00 AM	5:00 PM	5	70	62		
-	proposed	7:00 AM	5:00 PM	5	70	55		
	existing			2		62		
	proposed			2		55		

Zone 2 Summary - Non Air Conditioned Spaces					
Number of Thermostats Required:	1				
Total Materials:	\$65				
Total Labor:	\$1,500				
Total Installation Cost:	\$1,565				
Payback:	Immediately.				

©2008 The Daylight Savings Company Goshen, NY Deer Park Robert Frost.doc

Page 7

Table 3-2 and Figure 3-1 represents the electrical energy usage for the surveyed building from Jun-06 to May-07. LIPA provides electricity to the facility under Rate 285. This electric rate has a component for consumption that is measured in kilowatt-hours (kWh). It is measured by multiplying the wattage of the equipment times the hours that it operates. For example, a 1,000-Watt lamp operating for 5 hours would measure 5,000 Watt-hours. Since one kilowatt is equal to 1,000 Watts, the measured consumption would be 5 kWh. This rate has another component for Peak Demand that is measured in kilowatts (kW). Following the example above, if your facility had nothing else in it except for the 1,000-Watt lamp, then your monthly Peak Demand would be 1.0 kW. Your meter averages your demand constantly over 15 or 30-minute intervals (depending upon the utility and the specific rate). At the end of the month you are charged for the highest "average" and this is called your Peak Demand. Based on these definitions of consumption and Peak Demand it can be shown that keeping equipment off whenever it is not in use will reduce your consumption, while not operating equipment simultaneously will reduce your Peak Demand.

Rates used in this report reflect the most current rate structure available. Table 3-1 shows the annualized rate structure:

Description	Summer	Winter	Average
Demand Charge	\$24.33/kW	\$4.68/kW	\$11.23/kW
Energy Charge	\$0.1522/kWh	\$0.1447/kWh	\$0.1472/kWh

Table 3-1Rate Structure for Rate 285

Figure 3-2 is a pie chart reflecting the electrical end-uses and their contribution to the total electricity usage. Table 3-3 is the electrical end-use in data format.

Table 3-4 and Figure 3-3 on the following pages show the natural gas energy usage for the surveyed building from Jun-06 to May-07. Gas is supplied by Keyspan. The annual usage and cost are 69,932 CCF and \$89,000, respectively. This yields an average cost \$1.27270 / CCF.

Figure 3-4 is a pie chart reflecting the gas end-uses and their contribution to the total gas usage. Table 3-5 is the gas end-use in data format.

Table	3-2
Lanc	J-4

Page 8

©2008 The Daylight Savings Company Goshen, NY Deer Park Robert Frost.doc

3 Historical Energy Usage and Costs

Peak Demand Month Days in Consumption Total of Use Month kWh Actual Billed Bill 06/06 30 57,600 232.0 232.0 \$14,355 07/06 31 33,600 \$7,360 116.6 116.6 08/06 31 49,920 211.8 211.8 \$13,698 236.0 09/06 30 45,280 236.0 \$10,343 10/0631 78,560 217.8 217.8\$12,288 30 11/06 52,000 218.6 218.6 \$8,043 12/06 31 67,520 221.9 221.9 \$10,454 31 01/07 70,400 213.6 213.6 \$10,563 02/07 28 223.2 78,400 223.2 \$11,668 03/07 31 52,800 215.7 215.7 \$7,856 04/07 30 228.0 66,880 228.0 \$10,087 05/07 31 60,000 245.6245.6 \$9,601 365 **Totals** 712,960 \$126,316

Electricity Billing Data

Figure 3-1 Electricity Usage Profile

©2008 The Daylight Savings Company	Page 9	Energy Report
Goshen, NY		3/5/08
Deer Park Robert Frost.doc		

Table 3-3Electricity End Use

	Percent
End Use	of Total
Cooling Equipment	6.7%
Lighting	45.7%
Exterior Lighting	1.3%
Ventilation	5.7%
Miscellaneous	29.9%
Motors	10.7%
TOTAL	100.0%

Figure 3-2 Electricity End Use

©2008 The Daylight Savings Company	Page 10	Energy Report
Goshen, NY		3/5/08
Deer Park Robert Frost.doc		

Date	Days per	Consumption	Total Bill
	Month	(CCF)	
6/06	30	1,186	\$1,489
7/06	31	395	\$693
8/06	31	421	\$688
9/06	30	667	\$875
10/06	31	2,551	\$2,807
11/06	30	5,613	\$7,773
12/06	31	9,344	\$11,975
1/07	31	15,437	\$18,556
2/07	28	17,311	\$21,310
3/07	31	9,327	\$12,481
4/07	30	6,421	\$8,606
5/07	31	1,260	\$1,748
Totals	365	69,932	\$89,000

Table 3-4 Natural Gas Billing Data

©2008 The Daylight Savings Company Page 11 Energy Report Goshen, NY 3/5/08 Deer Park Robert Frost.doc

Table 3-5Natural Gas End Use

	Percent
End Use	of Total
Heating Equipment	91.0%
Domestic Hot Water	7.0%
Miscellaneous	2.1%
TOTAL	100%

Figure 3-4 Natural Gas End Use

Heating Equipment 91.0%

©2008 The Daylight Savings Company Goshen, NY Deer Park Robert Frost.doc

Page 12

Building Characteristics

Facility Name:	Deer Park Schools Robert Frost Middle School	
Total Square Footage:	142,305	
Building Type:	Middle School	

Building Construction								
Description	Age (yrs)	Wall Type	Wall Insulation	Roof Type	Roof Insulation	Window Type		
2 Story School Building	40	Block	Minimal	Flat	Minimal	Single Pane		

Electric Meter 99246724

Equipment Inventory

Equipment denoted by an asterisk indicates an estimate of the equipment ratings due to equipment inaccessibility, worn nameplates, or a lack of nameplates. The Miscellaneous Equipment table ends with a column that shows that line's contribution to the total respective fuel bill (electricity, gas, oil, etc.)

Heating Equipment				
Description	Qty	Capacity	Fuel	Age (yrs)
Dual Fuel Boilers	2	4,000 MBH	gas	40

Cooling Equipment					
Description	Qty	Capacity	Age (years)		
Rooftop AC Units	2	2 Tons	10		
Server Room AC	2	2 Tons	5		
Through Wall AC	23	2 Tons	5		

Ventilation Equipment						
Description	Qty	Capacity	Hrs/Wk Winter	Hrs/Wk Summer		
Gym Exhaust	4	0.5 HP	60	40		
Exhaust Fans	36	0.25 HP	60	40		
Air Handlers for Heat	10	0.25 HP	65	10		
Room Air Handlers	70	0.12 HP	80	10		

Page 13

©2008 The Daylight Savings Company Goshen, NY

Energy Report 3/5/08

Deer Park Robert Frost.doc

Ventilation Equipment							
Description	Qty	Capacity	Hrs/Wk Winter	Hrs/Wk Summer			
Kitchen Air Handler	1	0.2 HP	5				
Gym Air Handlers	4	0.2 HP	60	5			

Domestic Hot Water Systems			
Description	Qty	Capacity	Fuel
90 Gallon	1	385 mbh	gas

Motor Inventory							
Equipment	Qty	НР	ODP/ TEFC	RPM	Usage hrs/day	Usage days/wk	Estimated Load Factor
Circulators -Heating	2	7.5			16	7	0.8
Circulators -Heating	1	1			16	7	0.8
Circulators -Heating	1	1					0.8
Air Compressor for Shops	1	5			6	5	0.8
Oil Compressor to Boilers	2	2			4	7	0.8
Compressors Pneumatic Controls	2	2			12	7	0.8
Boiler Room Sump Pump	2	0.75			1	7	0.8
Boiler Power Vent	2	0.5			4	7	0.8
Boiler Internal Circulation	2	0.2			8	7	0.8
Cogeneration Circulator NOT USED	1	0.5					0.8

Miscellaneous Equipment								
Description	Qty	Capacity	Fuel	Hrs/Wk Usage	% Fuel Usage	End-Use		
Miscellaneous Load	1	8 kW	elec	90	5.3%	Miscellaneous		
Milk Cooler	2	1 kW	elec	50	0.7%	Miscellaneous		
3 Door Commercial Refrigerator	2	4.5 kW	elec	60	3.9%	Miscellaneous		
Bread Warmer	4	1.2 kW	elec	60	2.1%	Miscellaneous		

©2008 The Daylight Savings Company Goshen, NY Deer Park Robert Frost.doc Page 14

Miscellaneous Equipment							
Description	Qty	Capacity	Fuel	Hrs/Wk Usage	% Fuel Usage	End-Use	
Gas Ovens	3	50 MBH	gas	10	1.1%	Miscellaneous	
Gas Range- 10 Burner	1	100 MBH	gas	5	0.4%	Miscellaneous	
Gas Fired Kettles	2	40 MBH	gas	7	0.4%	Miscellaneous	
Gas Steamers	1	40 MBH	gas	5	0.2%	Miscellaneous	
Beverage Dispenser	2	0.5 kW	elec	50	0.4%	Miscellaneous	
Various Shop Tools	6	1 kW	elec	25	1.1%	Miscellaneous	
Generator - No Block Heater	1					Miscellaneous	
Refrigerators	3	0.4 kW	elec	50	0.4%	Miscellaneous	
Computers	175	0.15 kW	elec	70	13.4%	Miscellaneous	
Copiers	2	0.4 kW	elec	40	0.2%	Miscellaneous	
Printers	10	0.2 kW	elec	30	0.4%	Miscellaneous	
Ice Machine in Gym	1	1 kW	elec	50	0.4%	Miscellaneous	
Soda Machine	6	0.6 kW	elec	50	1.3%	Miscellaneous	
Water Coolers	2	0.2 kW	elec	30	0.1%	Miscellaneous	
20 kW Gas Fired cogeneration NOT USED	1					Miscellaneous	

The second to the last column of the Miscellaneous Equipment Table shows the percentage of the total fuel usage (electricity, natural gas, or fuel oil) which corresponds with the pie charts on the previous pages. The "Hrs/Wk Usage" column values include the equipment load factor and duty cycling (i.e. an air compressor running at 80% capacity and cycling on 30% of the time during a 60 hour week would have an "Hrs/Wk Usage" value of 60*0.08*0.30 = 14 Hrs/Wk).

Lighting Equipment								
Line #	Area	Description	Hrs/Wk Usage					
1	Exit Signs	23 exit sign fixtures, each using LED technology.	168					
2	Boiler Room	20 surface-mounted open industrial 1X4 fixtures, each using 1,4' T8 lamp and electronic ballast's.	25					
3	Classrooms	720 recessed lensed 2X4 fixtures, each using 2, 4' T8 lamps and electronic ballasts.	50					

©2008 The Daylight Savings Company Goshen, NY Deer Park Robert Frost.doc

Page 15

Lightir	ng Equipment		
Line #	Area	Description	Hrs/Wk Usage
4	Stairs & Halls	3 recessed lensed 1X4 fixtures, each using 1,4' T8 lamp and electronic ballast's.	90
5	Stairs & Halls	114 recessed lensed 2X4 fixtures, each using 2, 4' T8 lamps and electronic ballasts.	90
6	Restrooms	50 recessed lensed 1X4 fixtures, each using 1,4' T8 lamp and electronic ballast's.	60
7	Kitchen	38 recessed lensed 2X4 fixtures, each using 2, 4' T8 lamps and electronic ballasts.	60
8	Technology Area	168 surface-mounted open industrial 1X4 fixtures, each using 1,4' T8 lamp and electronic ballast's.	50
9	Admin Offices	21 recessed lensed 2X4 fixtures, each using 3,4' T8 lamps and electronic ballasts.	60
10	Admin Offices	11 recessed lensed 2X4 fixtures, each using 2, 4' T8 lamps and electronic ballasts.	60
11	Office Rest room	2 surface-mounted open industrial 1X4 fixtures, each using 1,4' T8 lamp and electronic ballast's.	40
12	Gym	56 high bay fixtures, each using 400-Watt metal halide lamps.	60
13	Gym Stage	10 hi-hat fixtures, each using 300-Watt, incandescent lamps.	10
14	Gym Stage	4 recessed lensed 2X4 fixtures, each using 2, 4' T8 lamps and electronic ballasts.	40
15	Gym Stage	5 track lighting fixtures, each using 200-Watt, incandescent lamps.	1
16	Gym Office	4 recessed lensed 2X4 fixtures, each using 1,4' T8 lamp and electronic ballast's.	65
17	Gym Office	8 recessed lensed 2X4 fixtures, each using 2, 4' T8 lamps and electronic ballasts.	65
18	Locker Rooms	68 surface-mounted wrap 1X4 fixtures, each using 1,4' T8 lamp and electronic ballast's.	65
19	Showers	10 surface-mounted wrap 1X4 fixtures, each using 1,4' T8 lamp and electronic ballast's.	50
20	Various Offices	19 recessed lensed 2X4 fixtures, each using 2, 4' T8 lamps and electronic ballasts.	45

©2008 The Daylight Savings Company Goshen, NY Deer Park Robert Frost.doc Page 16

Lightir	ng Equipment		
Line #	Area	Description	
21	Band Room 1	15 recessed lensed 2X4 fixtures, each using 2, 4' T8 lamps and electronic ballasts.	45
22	Band Room 1	12 surface-mounted wrap 1X4 fixtures, each using 1,4' T8 lamp and electronic ballast's.	40
23	Choral Room	6 recessed lensed 2X4 fixtures, each using 1,4' T8 lamp and electronic ballast's.	40
24	Choral Room	12 recessed lensed 2X4 fixtures, each using 2, 4' T8 lamps and electronic ballasts.	40
25	Instrument Room	2 recessed lensed 2X4 fixtures, each using 1,4' T8 lamp and electronic ballast's.	30
26	Band Room 2	8 hi-hat fixtures, each using 22-Watt, compact fluorescent, screw-in lamps .	50
27	Band Room 2	8 recessed lensed 2X4 fixtures, each using 2, 4' T8 lamps and electronic ballasts.	50
28	Band Room 2	4 recessed lensed 1X4 fixtures, each using 1,4' T8 lamp and electronic ballast's.	50
29	Prep Rooms	20 recessed lensed 2X4 fixtures, each using 2, 4' T8 lamps and electronic ballasts.	50
30	Cafeteria	132 surface-mounted wrap 1X4 fixtures, each using 1,4' T8 lamp and electronic ballast's.	50
31	Art Rooms	50 recessed lensed 2X4 fixtures, each using 2, 4' T8 lamps and electronic ballasts.	50
35	Foyer	18 recessed fixtures, each using 2, 4' T8 lamps and electronic ballasts.	168
36	Outdoor	4 pole-mounted fixtures, each using 150-Watt high pressure sodium lamps.	90
37	Outdoor	50 surface-mounted fixtures, each using 100-Watt metal halide lamps.	90
38	Outdoor Courtyard	2 surface-mounted fixtures, each using 100-Watt, incandescent lamps.	40
39	Parking Lot	7 pole-mounted fixtures, each using 150-Watt high pressure sodium lamps.	90

©2008 The Daylight Savings Company Goshen, NY Deer Park Robert Frost.doc

Page 17

Methodology

The first step in the energy analysis is the site survey. The auditor walks your entire site to inventory the building envelope (roof, windows, etc.), the heating, ventilation, and air conditioning equipment (HVAC), the lighting equipment, other facility-specific equipment, and to gain an understanding of how each facility is used.

The collected data is then processed with a software package from The Daylight Savings Company in Goshen, NY (1-800-337-2192) that calculates the anticipated energy usage. The actual energy usage is entered directly from your utility bills. The anticipated energy usage is compared to the actual usage. If necessary, corrections are made to the site-collected data until the anticipated energy usage matches the actual usage. This process develops an end-use baseline for all of the fuels used at the facility. The baseline is used to calculate the energy savings for the measures that are recommended in this report.

The savings in this report are not duplicative. The savings for each recommendation may actually be higher if the individual recommendations were installed instead of the entire project. For example, the lighting module calculates the change in wattage and multiplies it by the <u>new</u> operating hours <u>instead of the existing</u> operating hours (if there was a change in the hours at all). The lighting controls module calculates the change in hours and multiplies it by the <u>new</u> system wattage <u>instead of the existing</u> wattage. Therefore, if you chose to install the recommended lighting system but not the lighting controls, the savings achieved with the new lighting system would actually be higher because there would have been no reduction in the hours of use.

The same principal follows for heating, cooling, and temperature recommendations - even with fuel switching. If there are recommendations to change the temperature settings to reduce fuel use, then the savings for the heating/cooling equipment recommendations are reduced, as well.

Our thermal module calculates the savings for temperature reductions using ASHRAE's modified bin method. The savings are calculated in "output" values -meaning <u>energy</u>, not <u>fuel</u> savings. To show fuel savings we multiply the energy values times the fuel conversion factor (these factors are different for electricity, natural gas, fuel oil, etc.) and also take into account the heating/cooling equipment efficiency. The temperature recommendation savings are lower when the heating/cooling equipment is more efficient or is using a cheaper fuel. Also, you may see natural gas savings in this report even if you do not currently have natural gas. This happens when fuel switching was recommended for your heating/cooling equipment and you have temperature reduction recommendations, as well.

Thermal recommendations (insulation, windows, pipe insulation etc.) are evaluated by taking the difference in the thermal load due to reduced heat transfer. Again, the "thermal load" is the thermal load after the other recommendations have been accounted for.

Lastly, installation costs are then applied to each recommendation and simple paybacks are calculated. Costs are derived from Means Cost Data, other industry publications, and local contractors and suppliers.

©2008 The Daylight Savings Company Goshen, NY Deer Park Robert Frost.doc Page 18

Long Island Power Authority – Summary Energy Audit Report for:

Deer Park Schools Robert Frost Middle School

Audit Date: 10/3/2007	I I	Facility contact person: Kirk Gostkowski Facility contact phone #: 631-274-4080					
Deer Park Schools Robert Frost Middle School 450 Half Hollow Road Deer Park NY 11729			Annual Energy Costs:				
LIPA main account number: 724-39-4200-18			Electricit Natural (Total	ty \$12 Gas \$8 \$21	\$126,316 \$89,000 \$215,316		
	D.4	Cont A Phone	A	D. I. I	•41	0/ . C A	

Description	Potential Rebate*	Cost After Rebate	Annual Savings	Payback with Rebate	% of Annual Energy Cost
Upgrade the Lighting	\$1,960	\$16,660	\$5,412	3.1 years	2.5%
Install Lighting Controls	\$1,575	\$11,925	\$4,204	2.8 years	2.0%
Improve Temperature Control	\$100	\$3,030	\$1,703	1.8 years	0.8%
Totals	\$3,635	\$31,615	\$11,319	2.8 years	5.3%

* <u>NOTE</u>: Rebates are subject to caps, changes and eligibility requirements. Contact your LIPA representative or the audit program administrator, Stacey Wagner at (631) 755-5358 for assistance in determining your potential rebate amount.

Recommendation Highlights:

- Install new lighting products to increase the efficiency of your lighting fixtures.
- Install lighting controls in certain areas of your facility to reduce lighting use during unoccupied periods.
- Modify your temperature setpoints to reduce the energy use associated with heating and/or cooling your facility.